160 research outputs found

    Optimisation of the RT-PCR detection of immunomagnetically enriched carcinoma cells

    Get PDF
    BACKGROUND: Immunomagnetic enrichment followed by RT-PCR (immunobead RT-PCR) is an efficient methodology to identify disseminated carcinoma cells in the blood and bone marrow. The RT-PCR assays must be both specific for the tumor cells and sufficiently sensitive to enable detection of single tumor cells. We have developed a method to test RT-PCR assays for any cancer. This has been investigated using a panel of RT-PCR markers suitable for the detection of breast cancer cells. METHODS: In the assay, a single cell line-derived tumor cell is added to 100 peripheral blood mononuclear cells (PBMNCs) after which mRNA is isolated and reverse transcribed for RT-PCR analysis. PBMNCs without added tumor cells are used as specificity controls. The previously studied markers epidermal growth factor receptor (EGFR), mammaglobin 1 (MGB1), epithelial cell adhesion molecule (EpCAM/TACSTD1), mucin 1 (MUC1), carcinoembryonic antigen (CEA) were tested. Two new epithelial-specific markers ELF3 and EphB4 were also tested. RESULTS: MUC1 was unsuitable as strong amplification was detected in 100 cell PBMNC controls. Expression of ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 was found to be both specific for the tumor cell, as demonstrated by the absence of a signal in most 100 cell PBMNC controls, and sensitive enough to detect a single tumor cell in 100 PBMNCs using a single round of RT-PCR. CONCLUSIONS: ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 are appropriate RT-PCR markers for use in a marker panel to detect disseminated breast cancer cells after immunomagnetic enrichment

    Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types.</p> <p>Results</p> <p>Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border.</p> <p>Conclusion</p> <p>Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.</p

    Findings in young adults at colonoscopy from a hospital service database audit

    Get PDF
    Background: Colorectal cancer (CRC) diagnosed at <50 years is predominantly located in the distal colon and rectum. Little is known about which lesion subtypes may serve as CRC precursors in young adults. The aim of this work was to document the prevalence and histological subtype of lesions seen in patients aged <50 years, and any associated clinical features. Methods: An audit of the colonoscopy database at The Queen Elizabeth Hospital in Adelaide, South Australia over a 12-month period was undertaken. Findings were recorded from both colonoscopy reports and corresponding histological examination of excised lesions. Results: Data were extracted from colonoscopies in 2064 patients. Those aged <50 comprised 485 (24%) of the total. CRC precursor lesions (including sessile serrated adenoma/polyps (SSA/P), traditional serrated adenomas, tubular adenomas ≥10 mm or with high-grade dysplasia, and conventional adenomas with villous histology) were seen in 4.3% of patients aged <50 and 12.9% of patients aged ≥50 (P <0.001). Among colonoscopies yielding CRC precursor lesions in patients under 50 years, SSA/P occurred in 52% of procedures (11/21), compared with 27% (55/204) of procedures in patients aged 50 and older (P = 0.02). SSA/P were proximally located in (10/11) 90% of patients aged under 50, and 80% (43/54) of those aged 50 and older (P = 0.46). Conclusions: SSA/P were the most frequently observed CRC precursor lesions in patients aged <50. Most CRCs in this age group are known to arise in the distal colon and rectum suggesting that lesions other than SSA/P may serve as the precursor for the majority of early-onset CRC.Stephanie Wong, Ilmars Lidums, Christophe Rosty, Andrew Ruszkiewicz, Susan Parry, Aung Ko Win, Yoko Tomita, Sina Vatandoust, Amanda Townsend, Dainik Patel, Jennifer E. Hardingham, David Roder, Eric Smith, Paul Drew, Julie Marker, Wendy Uylaki, Peter Hewett, Daniel L. Worthley, Erin Symonds, Graeme P. Young, Timothy J. Price and Joanne P. Youn

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.

    Get PDF
    Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology

    Expression of uPAR mRNA in peripheral blood is a favourite marker for metastasis in gastric cancer cases

    Get PDF
    Urokinase-type plasminogen activator receptor (uPAR) plays a central role in the plasminogen activation cascade and participates in extracellular matrix degradation, cell migration and invasion. We evaluated the expression level of uPAR mRNA and the presence of isolated tumour cells (ITCs) in bone marrow (BM) and peripheral blood (PB) in gastric cancer patients and clarified its clinical significance. We assessed specific uPAR mRNA expression by quantitative real-time reverse transcriptase- polymerase chain reaction (RT–PCR) in BM and PB in 846 gastric cancer patients as well as three epithelial cell markers, carcinoembryonic antigen (CEA), cytokeratin (CK)-19 and CK-7. The uPAR mRNA expression in bone marrow and peripheral blood expressed significantly higher than normal controls (P<0.0001). The uPAR mRNA in BM showed concordant expression with the depth of tumour invasion, distant metastasis, and the postoperative recurrence (P=0.015, 0.044 and 0.010, respectively); whereas in PB, we observed more intimate significant association between uPAR expression and clinicopathologic variables, such as depth of tumour invasion, the distant metastasis, the venous invasion and the clinical stage (P=0.009, 0.002, 0.039 and 0.008, respectively). In addition, the uPAR mRNA expression in PB was an independent prognostic factor for distant metastasis by multivariate analysis. We disclosed that it was possible to identify high-risk patients for distant metastasis by measuring uPAR mRNA especially in peripheral blood at the timing of operation in gastric cancer patients

    Long term survival following the detection of circulating tumour cells in head and neck squamous cell carcinoma

    Get PDF
    Background Techniques for detecting circulating tumor cells in the peripheral blood of patients with head and neck cancers may identify individuals likely to benefit from early systemic treatment. Methods Reconstruction experiments were used to optimise immunomagnetic enrichment and RT-PCR detection of circulating tumor cells using four markers (ELF3, CK19, EGFR and EphB4). This method was then tested in a pilot study using samples from 16 patients with advanced head and neck carcinomas. Results Seven patients were positive for circulating tumour cells both prior to and after surgery, 4 patients were positive prior to but not after surgery, 3 patients were positive after but not prior to surgery and 2 patients were negative. Two patients tested positive for circulating cells but there was no other evidence of tumor spread. Given this patient cohort had mostly advanced disease, as expected the detection of circulating tumour cells was not associated with significant differences in overall or disease free survival. Conclusion For the first time, we show that almost all patients with advanced head and neck cancers have circulating cells at the time of surgery. The clinical application of techniques for detection of spreading disease, such as the immunomagnetic enrichment RT-PCR analysis used in this study, should be explored further
    corecore